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Abstract. Quantum spin systems may provide physical realizations of quantum gate arrays. It
is shown that certain natural unitary time evolution matrices for spin-1

2 quantum spins, interpreted
in this context as quantum gate arrays, can be represented as coherent sums, with appropriate
phases, over classical logic gate arrays, in a direct analogy with the Feynman path integral
representation of quantum mechanics. On the other hand, it is shown that a natural quantum
gate obtained by analytically continuing the transfer matrix of the anisotropic nearest-neighbour
Ising model to imaginary time, does not admit such a representation.

Shor’s discovery [1] of polynomial time quantum algorithms for prime factorization and
discrete logarithm has resulted in an upsurge of interest in the properties of quantum
computation [2]. Significant results have been obtained concerning the physical realizability
of quantum gates, and the realizability of classical universal 3-bit gates such as the Fredkin
and Toffoli [3] gates in terms of quantum 2-bit logic. Furthermore, Barencoet al [4] have
shown that all quantum gates can be expressed as compositions of all 1-bit quantum gates
and the 2-bit exclusive-or gate. The problems of error correction [5] and decoherence [6]
in quantum computation have also been addressed.

Our aim here is to consider the properties of quantum-computational devices in a
different light. Instead of constructing classical computational devices in terms of quantum
gate arrays, we want to represent some rather general quantum gate arrays in terms
of coherent sums over classical gate arrays, much as Feynman represented quantum-
mechanical amplitudes in terms of sums over paths, including paths which are not necessarily
solutions of the classical equations of motion [7]. There are obvious reasons for wanting
such a representation. An intuition for the efficiency of quantum computation is that
quantum computers sum coherently over many classical computations, and it is important
to understand quantitatively how this works, and how it can be exploited. After this paper
first appeared, related ideas were discussed in detail in [14].

Further, it is likely that the true power of quantum computation will come from
massively parallel computation, a point that has been considered from the very beginnings
of the subject, and recently re-emphasized [8]. A possible physical realization of such
massively parallel quantum computers might be in terms of quantum spin systems (such as
spin chains or spin arrays), andit is the interplay between the dynamics and quantum logic
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of these spin systemsthat we will focus on in this paper. An intuition for the behaviour
of quantum gate arrays, in terms of classical logic gate arrays, is of great interest in this
context, just as in the case of the Feynman path integral. Consider, for example, the quantum
phenomenon of tunnelling—one would like to know what the classical computational
analogue of this might be, and how it should be used in the design of quantum computers
and quantum programming.

Indeed, programming quantum computers on the basis of what classical logic it replaces,
is likely to be inefficient. It may be more efficient to program according to the properties
of quantum computers, much as with a writing code for parallel processors, and for this
purpose it is again important to gain some classical intuition for the properties of quantum
gate arrays. Such classical logic representations also allow for a new type of simulation of
quantum computers by classical parallel processors, rather obviously.

We present two independent insights into classical representations of quantum logic
gate arrays. First, we show that for a natural set of Hamiltonians governing quantum spin-1

2
degrees of freedom, there is a simple representation of the unitary time evolution operator,
in other words, the quantum logic gate array, in terms of appropriately weighted sums over
classical logic gate arrays [9]. We describe properties of these ‘logic integrals’ (adapting
the term ‘path integrals’ to the present context) which can be deduced from the physical
properties of the spin systems, and we suggest some uses for such quantum logic gate arrays.
There is extensive literature on path integrals for spin (see, for example, [13]), but the ‘logic
integrals’ we describe are at some remove from such representations, as will be clear in the
following. Certain general properties of such quantum gate arrays for a one-dimensional
chain of spins could be inferred by finite-size scaling calculations around conformal field
theories in two dimensions [10].

In the first part of this paper we have established that for certain natural quantum
computers, such as quantum spin chains, there is a ‘logic integral’ representation, we then
want to show that not every unitary evolution matrix that occurs in a physical context
need have such classical logic representations. Therefore, we consider an anisotropic Ising
model on a two-dimensional square lattice. We show that the transfer matrix of this model,
analytically continued, is unitary at a unique value of the ‘time’ coupling, and we show
that this unitary quantum gatecannotbe represented as a sum over classical logic gates in
general. Thus, ‘logic integrals’ do not necessarily exist as representations of quantum logic
gate arrays, to be compared with the result of [11].

For our first problem, we consider quantum spin-1
2 degrees of freedom defined on a finite

set of sites0. The unitary matrix governing the time evolution of the wavefunction of these
spins is a quantum gate array found in nature, for example, arrays of interacting magnetic
atoms as they occur in magnetic materials. The Hilbert space at each site isHx ∼= C2, and
observables are elements of the bounded operators on this Hilbert space, just the set of 2×2
complex matricesM(2,C). The HamiltonianH for such a system can be written in general
asH = −∑b∈B Jbhb whereB, the set of ‘bonds’, is a collection of subsets of0, hb is an
arbitrary element in⊗x∈bM(2,C), with obvious restrictions to ensure thatH is Hermitian,
and theJb, b ∈ B are coupling constants. For much of our discussion, it will suffice
to take0 as a subset of the integers, say{0, . . . , L}, andB = {{0, 1}, . . . , {L − 1, L}},
which is the easiest case to visualize, that of a one-dimensional quantum spin chain, but
it is important to observe that our approach holds in all generality. Physically important
observables are usually expressed in terms of the spin matricesS1, S2, S3 which are the
generators of the fundamental representation of SU(2). They satisfy the commutation
relations [Sα, Sβ ] = i

∑
γ εαβγ S

γ where α, β, γ ∈ {1, 2, 3} and εαβγ is the completely
antisymmetric tensor withε123= 1.
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Our logic integral representation of the time evolution generated byH is based on the
‘quasistate’ decomposition introduced by Aizenman and Nachtergaele [9] in a statistical
mechanics context. The starting point is the following identity derived in [9]:

exp(−itH) =
∫
Dtω K(ω) (1)

where, up to normalization,Dtω is the integration measure given by

Dtω =
∏
b

∞∑
nb=0

(iJb)
nb

∫
06t1<···<tnb<t

nb∏
j=1

dtj (2)

whereω is a set of time-labelled bonds{(b1, t1), . . . , (bn, tn)}, with t1 < t2 < · · · tn, and
K(ω) is the time-ordered product of operators, one for each bond inω:

K(ω) =
∏∗

hbnhbn−1 . . . hb1. (3)

Here,
∏∗ indicates a time-ordered product. The time ordering is necessarily due to the

fact that the differenthb typically do not commute. If they do, i.e. [hb, hb′ ] = 0, (1)
and (2) reduce to the trivial identity exp(it

∑
b Jbhb) =

∏
b

∑∞
nb=0

1
nb ! (itJbhb)

nb . In (1)
it can be seen as the Dyson series known from perturbation theory, but where the entire
Hamiltonian is considered as a perturbation ofH = 0. This formula was used in [9] to
study antiferromagnetic isotropic quantum spin chains. These systems are not at all in a
perturbative regime, yet (1) is the starting point for a powerful description of these systems
in terms of Feynman-type diagrams.

The interpretation of the logic integral is simply that the time evolution of the system
governed byH can be written as a coherent superposition of classical logic gates determined
by the sequence of operatorshbi that act on the state of the system at timesti . This is
illustrated in figure 1, in the case that0 is a one-dimensional lattice andB are the nearest-
neighbour bonds on this lattice.

The next step is to pick special decompositions of the Hamiltonian as a sum of the form
H = −∑b Jbhb such that each termhb can be interpreted as a classical logic gate. In such
a case the logic integral becomes an integral over classical logic gates, and we believe that
this may give a good starting point for developing effective intuitions about the functioning
of quantum computing devices.

Figure 1. A space-time configurationω for a general Hamiltonian. Each grey bar represents a
quantum gate acting on two quantum bits at timeti given by its vertical coordinate.
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Figure 2. A configurationω for the one-dimensional Heisenberg spin-1
2 ferromagnet. The grey

bar in this case is an exchange gate, depicted in standard notation.

We illustrate with two examples that such special decompositions exist for physically
interesting Hamiltonians. Consider, for example,h to be the operator that interchanges the
states of the two sites,

hφ ⊗ ψ = ψ ⊗ φ (4)

for any two vectorsφ,ψ ∈ C2. This is the exchange gate on two bits,

E ≡


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (5)

which, asE = ( 1
4)−S1 ·S2, is equivalent to the Heisenberg spin-1

2 ferromagnet! Figure 2
shows a configurationω in this model.

From expressions equations (1)–(3) it is obvious that the quantum-evolution operator
can be decomposed as a linear superposition of classical logic gate arrays of the formK(ω).
For concreteness, consider a 3-spin system (equivalently, a 3-bit gate). By performing the
integrals in (2), for the example given in equations (4) and (5), we obtain series expansions
for the coefficients of the various classical logic gate arrays appearing in the decomposition:

exp(−itH) = (1− t2J 2+ · · ·)1+ (itJ + · · ·)E12+ (itJ + · · ·)E23+ (− 1
2t

2J 2+ · · ·)E123

+(− 1
2t

2J 2+ · · ·)E2
123+ (− 1

3it3J 3+ · · ·)E13.

In the case of the example given in equations (4) and (5),Eij is the exchange gate on
the i andj bits, and

E123= E23E12 =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1


is the matrix that permutes the three bits cyclically. This example illustrates the utility of
classical logic representations of quantum gate arrays—by varyingt, one can single out
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Figure 3. A configurationω for the one-dimensional Heisenberg antiferromagnet, showing
virtual loops. Each horizontal pair of lines represents the sum of the identity (or do nothing)
gate on two bits and (minus) the exchange gate (1− E, in the notation used in this paper).

contributions of different classical logic gate arrays from the quantum gate array.t is just
the time of evolution of the quantum system, so no external classical ‘switches’ are needed,
which helps in minimizing the effects of decoherence [6].

If 0 = 0A ∪ 0B is a bipartite lattice, andB is a set with elements of the form
{a, b}, a ∈ 0A andb ∈ 0B, then we consider

h =
∑

m,m′=±1/2

(−1)m−m
′ |m,−m〉〈m′,−m′|.

This is the Heisenberg antiferromagnet. In terms of classical logic, this operatorh

corresponds to1 − E, and is shown in figure 3. In this case, a new phenomenon that
contributes to the quantum gate array, but would not appear in classical logic, becomes
apparent in the quasistate representation. Notice that 1− E is proportional to a projection
of rank 1: (1−E)2 = 2(1−E). The factor of 2 corresponds to the fact that there areclosed
loops in a typicalω, as shown in figure 3. The sum over classical configurations that gives
the quantum amplitude therefore includes sums over ‘virtual’ states of the classical logic.

Such logic-integral decompositions of quantum gate arrays can be extended to a much
wider class of Hamiltonians with ease [9], providing simple classical logic representations
with component classical gates that aren-bit gates. In the one-dimensional case, with
0 = {0, . . . , L}, this amounts to takingB = {{0, . . . , n}, {1, . . . , n + 1}, . . .}. Quasistate
decompositions for such cases have been reported in detail elsewhere [9].

Simple properties of such quantum gate arrays can be extracted from physical properties
of these systems. The original quasistate decomposition introduced in [9] was formulated
for β ↔ it real, as appropriate for studying quantum-statistical mechanics. Under rather
general conditions (see e.g. [12]), the correlation functions of quantum-statistical mechanics,
analytically continued, become the correlation functions of the quantum spin system under
unitary time evolution. Of interest from the present point of view are the following.

(1) Some quantum spin systems exhibit phase transitions at real values ofβ in the infinite
volume limit. This implies that the analytically continued real time correlation functions
exhibit different characteristics, for long-time versus short-time evolution, effectively
behaving as two different quantum gate arrays. Withvery naive assumptions about the
analytic continuation, one could have a situation such that for long-time evolution, one
would have algebraically decaying correlations between the input and output, but for short-
time evolution one would have oscillations in the correlation between output and input.
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(2) At finite lattice sizes, one can still get a good handle on properties of quantum gate
arrays forβ close toβc by calculating finite-size corrections to the correlation functions at
criticality [10], and then continuing to imaginaryβ, to obtain the required correlation of the
quantum gate array. This will be reported on in detail elsewhere.

For the converse of our first problem, we now turn to the anisotropic Ising model in two
dimensions, to exhibit another aspect to representations of quantum gate arrays as ‘logic
integrals’ of classical logic gate arrays. In contrast to the first part of this paper, where we
dealt with quantum spin chains or arrays which are found (or can be fabricated) in nature,
we do not know of a physical realization of the Ising model continued as we do below.
Nevertheless, we present this formal example to indicate possible limits to the logic integral
approach that we have formulated in this paper.

Recall that this model is a classical statistical mechanics model, with spins taking values
±1 living on the sites of a square two-dimensional lattice. For our purposes, we take the
system to be of finite extent in the space direction. The time direction’s extent will not
be relevant for us, but for the nonce we assume periodic boundary conditions in the time
direction. The partition function of this model is

Z ≡
∑
{σ }

exp

(
− β1

N∑
i=0

∑
t

σi,tσi,t+1− β
∑
t

N−1∑
i=0

σi,tσi+1,t

)
where the sum overt is a sum over the time slices of the lattice. Introduce a transfer matrix
T , defined by

〈σ̃0, . . . σ̃N |T |σ0, . . . σN 〉 ≡ 2−N/2 exp

(
− β1

N∑
i=0

σ̃iσi − β
N−1∑
i=0

σiσi+1

)
.

For a lattice of time extentτ, the partition function can now be written asZ ∝ tr T τ .
This transfer matrixT essentially allows one to interpret the Ising model as a discrete-time
one-dimensional quantum system, withT ≡ exp(−H). We can now analytically continue
this matrix to imaginary time, and ask if there are imaginary values ofβ andβ1 such that
T is a unitary matrix.

To this end, we evaluate

〈σ̃ |T T †|σ 〉 = 2−N
∑
σ ′

exp

(
−

N∑
i=0

[β1σ̃i + β∗1σi ]σ ′i − (β + β∗)
N−1∑
i=0

σ ′i σ
′
i+1

)
.

It follows then that ifβ = iγ, andβ1 = ±iπ/4, T is a unitary matrix for any value ofγ.
ForN = 2, this matrix is

T =


i 1 1 −i
1 i −i 1
1 −i i 1
−i 1 1 i

× diag(1,1∗,1∗,1)

where1 ≡ exp(−iγ ). If 1 = 1, it is clear thatT can be written as

T (γ = 0) = i

1− i


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

− i


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

−


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




which is readily recognizable as a sum over classical logic gates, with appropriate phase
factors. Here, we have restricted ourselves to decompositions with coefficients of modulus
1. It is easy to see that there are two such decompositions.
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However, when1 6= 1, such a decomposition is not possible in general. Indeed, there
is no reason to suppose that such a decomposition must exist. Classical logic gates onN

bits are matrices in the 2N ×2N permutation representation of the permutation group on 2N

letters. By Schur’s lemma, the complex linear span of the permutation representation onn

letters is a strict subalgebra of the algebra of complexn×n matrices, since the permutation
representation is reducible, but the defining representation of U(n) is certainly irreducible,
so its complex linear span is all of the algebra of complexn× n matrices.

In conclusion, we have shown there is a natural representation of quantum-gate arrays
that occur in nature in the form of spin chains in terms of sums over classical logic gate
arrays, analogous to the Feynman sum over paths representation of quantum-mechanical
amplitudes. We have pointed out that this viewpoint on quantum logic gate arrays allows a
whole host of tools from statistical mechanics and quantum spin chains to be used to obtain
a better intuition for their characteristics. We have explicitly shown that such representations
may not always be possible, indicating some of the limits of this approach.
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